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Abstract
ADHD is one of the most common neuro-developmental disorders 
among children. Brain network provides a mathematical description of 
the complex connections and interactions among neurons in brain. In this 
research, we propose a graph deep learning method to classify ADHD 
using time series brain functional magnetic resonance imaging (fMRI) 
data. A graph diffusion convolutional recurrent network (GDCRN) 
architecture is presented for the time series graph-structured ADHD 
classification. The outcome of this research is expected to promote the 
implementation of deep learning for ADHD detection and brain network 
analysis in computer-aided diagnosis.

Methodology
• Based on diffusion convolution recurrent neural network (RNN)
• Trained by maximizing the likelihood of generating the target future 

time series using backpropagation through time. 

Figure 1: Proposed GDCRN model framework

• RNNs to model the temporal dependency
• Diffusion convolutional gated recurrent unit is used to modify the 

matrix multiplications in Gated Recurrent Units (GRU) with the 
diffusion as,

𝐶(𝑡) = tanh(𝜃 𝑋 𝑡 , (𝑟(𝑡) ⊙𝐻(𝑡−1)) + 𝑏𝑐)

𝐻(𝑡) = 𝑢(𝑡) ⊙𝐻 𝑡−1 + 1 − 𝑢 𝑡 ⊙𝐶 𝑡

Where 𝑋(𝑡) and 𝐻(𝑡) denote the input and output of at time t; 𝑟(𝑡) and 
𝑢(𝑡) are set gate and update gate, respectively. 𝜃 is parameter for the 
corresponding kernel filters. ⊙ refers to element-wise multiplication.

Data Preparation
• 120 patient samples including ADHD versus normal control. 
• Time series fMRI signals are collected. 
• Sliding window size of 60 seconds with 20% overlap has been applied 

to calculate correlation matrices. 

Figure 2: Example of time series fMRI signals

Figure 3: Example of adjacency matrices and time series graphs

• The strongest 3% edges are retained. 
• 5 calculated time series matrices for each sample, and consequently, 5 

time series graphs are constructed.

Figure 4: Constructed ADHD and normal control brain networks

Experimental Results

Table 1: Test results for different graph deep learning methods

• GDCRN is compared with DCNN model and DEMO-Net. 
• It is expected to find a more effective way to embed more dynamic 

node features.

Conclusions and Future Work
• Studied ADHD classification using the proposed GDCRN model with 

graph-structured temporal MRI data. 
• Demonstrated that GDCRN is applicable to classify ADHD and non-

ADHD patients, whereas GDCRN can also handle time series graphs 
considering both spatial and temporal information.

o Long-range spatial dependencies between individual nodes or non-
local graph behavior are interesting to explore.
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